Edit model card

ViT5-Base Finetuned on vietnews Abstractive Summarization (No prefix needed)

State-of-the-art pretrained Transformer-based encoder-decoder model for Vietnamese. PWC

How to use

For more details, do check out our Github repo and eval script.

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
​
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base-vietnews-summarization")  
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-base-vietnews-summarization")
model.cuda()
​
sentence = "VietAI là tổ chức phi lợi nhuận với sứ mệnh ươm mầm tài năng về trí tuệ nhân tạo và xây dựng một cộng đồng các chuyên gia trong lĩnh vực trí tuệ nhân tạo đẳng cấp quốc tế tại Việt Nam."
sentence = sentence + "</s>"
encoding = tokenizer(sentence, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
    input_ids=input_ids, attention_mask=attention_masks,
    max_length=256,
    early_stopping=True
)
for output in outputs:
    line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
    print(line)

Citation

@inproceedings{phan-etal-2022-vit5,
    title = "{V}i{T}5: Pretrained Text-to-Text Transformer for {V}ietnamese Language Generation",
    author = "Phan, Long and Tran, Hieu and Nguyen, Hieu and Trinh, Trieu H.",
    booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop",
    year = "2022",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.naacl-srw.18",
    pages = "136--142",
}
Downloads last month
164

Dataset used to train VietAI/vit5-base-vietnews-summarization