VipLLaVA Model Card
Below is the model card of VipLlava model 7b, which is copied from the original Llava model card that you can find here.
Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance (the model works similarly as Llava):
Model details
Model type: LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture.
Vip-LlaVa enhances the training protocol of Llava by marking images and interact with the model using natural cues like a “red bounding box” or “pointed arrow” during training.
Model date: ViP-LLaVa was released in December 2023.
Paper or resources for more information: https://vip-llava.github.io/
How to use the model
First, make sure to have transformers >= 4.35.3
.
The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template and add the token <image>
to the location where you want to query images:
According to the official code base, it is recommeneded to use this template:
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: <image>\n<prompt>###Assistant:
Where <prompt>
denotes the prompt asked by the user
Using pipeline
:
from transformers import pipeline
from PIL import Image
import requests
model_id = "llava-hf/vip-llava-7b-hf"
pipe = pipeline("image-to-text", model=model_id)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
question = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"
prompt = f"A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: <image>\n{question}###Assistant:"
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
print(outputs)
Using pure transformers
:
Below is an example script to run generation in float16
precision on a GPU device:
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, VipLlavaForConditionalGeneration
model_id = "llava-hf/vip-llava-7b-hf"
question = "What are these?"
prompt = f"A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: <image>\n{question}###Assistant:"
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
model = VipLlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
Model optimization
4-bit quantization through bitsandbytes
library
First make sure to install bitsandbytes
, pip install bitsandbytes
and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
model = VipLlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ load_in_4bit=True
)
Use Flash-Attention 2 to further speed-up generation
First make sure to install flash-attn
. Refer to the original repository of Flash Attention regarding that package installation. Simply change the snippet above with:
model = VipLlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ use_flash_attention_2=True
).to(0)
License
Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.
Citation
To cite this work please use
@misc{cai2023making,
title={Making Large Multimodal Models Understand Arbitrary Visual Prompts},
author={Mu Cai and Haotian Liu and Siva Karthik Mustikovela and Gregory P. Meyer and Yuning Chai and Dennis Park and Yong Jae Lee},
year={2023},
eprint={2312.00784},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 195,244