Segformer B2 fine-tuned for clothes segmentation
SegFormer model fine-tuned on ATR dataset for clothes segmentation but can also be used for human segmentation. The dataset on hugging face is called "mattmdjaga/human_parsing_dataset".
NEW - Training code. Right now it only contains the pure code with some comments, but soon I'll add a colab notebook version and a blog post with it to make it more friendly.
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch.nn as nn
processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes")
model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
plt.imshow(pred_seg)
Labels: 0: "Background", 1: "Hat", 2: "Hair", 3: "Sunglasses", 4: "Upper-clothes", 5: "Skirt", 6: "Pants", 7: "Dress", 8: "Belt", 9: "Left-shoe", 10: "Right-shoe", 11: "Face", 12: "Left-leg", 13: "Right-leg", 14: "Left-arm", 15: "Right-arm", 16: "Bag", 17: "Scarf"
Evaluation
Label Index | Label Name | Category Accuracy | Category IoU |
---|---|---|---|
0 | Background | 0.99 | 0.99 |
1 | Hat | 0.73 | 0.68 |
2 | Hair | 0.91 | 0.82 |
3 | Sunglasses | 0.73 | 0.63 |
4 | Upper-clothes | 0.87 | 0.78 |
5 | Skirt | 0.76 | 0.65 |
6 | Pants | 0.90 | 0.84 |
7 | Dress | 0.74 | 0.55 |
8 | Belt | 0.35 | 0.30 |
9 | Left-shoe | 0.74 | 0.58 |
10 | Right-shoe | 0.75 | 0.60 |
11 | Face | 0.92 | 0.85 |
12 | Left-leg | 0.90 | 0.82 |
13 | Right-leg | 0.90 | 0.81 |
14 | Left-arm | 0.86 | 0.74 |
15 | Right-arm | 0.82 | 0.73 |
16 | Bag | 0.91 | 0.84 |
17 | Scarf | 0.63 | 0.29 |
Overall Evaluation Metrics:
- Evaluation Loss: 0.15
- Mean Accuracy: 0.80
- Mean IoU: 0.69
License
The license for this model can be found here.
BibTeX entry and citation info
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
- Downloads last month
- 436,103