LLaVA-Llama-3-8B
Collection
8 items
•
Updated
•
11
llava-llama-3-8b is a LLaVA model fine-tuned from meta-llama/Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336 with LLaVA-Pretrain and LLaVA-Instruct by XTuner.
Note: This model is in XTuner LLaVA format.
Resources:
Model | Visual Encoder | Projector | Resolution | Pretraining Strategy | Fine-tuning Strategy | Pretrain Dataset | Fine-tune Dataset |
---|---|---|---|---|---|---|---|
LLaVA-v1.5-7B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, Frozen ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
LLaVA-Llama-3-8B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
LLaVA-Llama-3-8B-v1.1 | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | ShareGPT4V-PT (1246K) | InternVL-SFT (1268K) |
Model | MMBench Test (EN) | MMBench Test (CN) | CCBench Dev | MMMU Val | SEED-IMG | AI2D Test | ScienceQA Test | HallusionBench aAcc | POPE | GQA | TextVQA | MME | MMStar |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LLaVA-v1.5-7B | 66.5 | 59.0 | 27.5 | 35.3 | 60.5 | 54.8 | 70.4 | 44.9 | 85.9 | 62.0 | 58.2 | 1511/348 | 30.3 |
LLaVA-Llama-3-8B | 68.9 | 61.6 | 30.4 | 36.8 | 69.8 | 60.9 | 73.3 | 47.3 | 87.2 | 63.5 | 58.0 | 1506/295 | 38.2 |
LLaVA-Llama-3-8B-v1.1 | 72.3 | 66.4 | 31.6 | 36.8 | 70.1 | 70.0 | 72.9 | 47.7 | 86.4 | 62.6 | 59.0 | 1469/349 | 45.1 |
pip install 'git+https://github.com/InternLM/xtuner.git#egg=xtuner[deepspeed]'
xtuner chat xtuner/llava-llama-3-8b \
--visual-encoder openai/clip-vit-large-patch14-336 \
--llava xtuner/llava-llama-3-8b \
--prompt-template llama3_chat \
--image $IMAGE_PATH
XTuner integrates the MMBench evaluation, and you can perform evaluations with the following command!
xtuner mmbench xtuner/llava-llama-3-8b \
--visual-encoder openai/clip-vit-large-patch14-336 \
--llava xtuner/llava-llama-3-8b \
--prompt-template llama3_chat \
--data-path $MMBENCH_DATA_PATH \
--work-dir $RESULT_PATH
After the evaluation is completed, if it's a development set, it will directly print out the results; If it's a test set, you need to submit mmbench_result.xlsx
to the official MMBench for final evaluation to obtain precision results!
Please refer to docs.
@misc{2023xtuner,
title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
author={XTuner Contributors},
howpublished = {\url{https://github.com/InternLM/xtuner}},
year={2023}
}