LLaVA-Llama-3-8B
Collection
8 items
•
Updated
•
11
llava-llama-3-8b-transformers is a LLaVA model fine-tuned from meta-llama/Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336 with LLaVA-Pretrain and LLaVA-Instruct by XTuner.
Note: This model is in HuggingFace LLaVA format.
Resources:
Model | Visual Encoder | Projector | Resolution | Pretraining Strategy | Fine-tuning Strategy | Pretrain Dataset | Fine-tune Dataset |
---|---|---|---|---|---|---|---|
LLaVA-v1.5-7B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, Frozen ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
LLaVA-Llama-3-8B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
LLaVA-Llama-3-8B-v1.1 | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | ShareGPT4V-PT (1246K) | InternVL-SFT (1268K) |
Model | MMBench Test (EN) | MMBench Test (CN) | CCBench Dev | MMMU Val | SEED-IMG | AI2D Test | ScienceQA Test | HallusionBench aAcc | POPE | GQA | TextVQA | MME | MMStar |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LLaVA-v1.5-7B | 66.5 | 59.0 | 27.5 | 35.3 | 60.5 | 54.8 | 70.4 | 44.9 | 85.9 | 62.0 | 58.2 | 1511/348 | 30.3 |
LLaVA-Llama-3-8B | 68.9 | 61.6 | 30.4 | 36.8 | 69.8 | 60.9 | 73.3 | 47.3 | 87.2 | 63.5 | 58.0 | 1506/295 | 38.2 |
LLaVA-Llama-3-8B-v1.1 | 72.3 | 66.4 | 31.6 | 36.8 | 70.1 | 70.0 | 72.9 | 47.7 | 86.4 | 62.6 | 59.0 | 1469/349 | 45.1 |
pipeline
from transformers import pipeline
from PIL import Image
import requests
model_id = "xtuner/llava-llama-3-8b-transformers"
pipe = pipeline("image-to-text", model=model_id, device=0)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = ("<|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat are these?<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n")
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
print(outputs)
>>> [{'generated_text': 'user\n\n\nWhat are these?assistant\n\nThese are two cats lying on a pink blanket or bed, possibly on a couch...'}]
transformers
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
model_id = "xtuner/llava-llama-3-8b-transformers"
prompt = ("<|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat are these?<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n")
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
>>> These are two cats lying on a pink blanket or bed, possibly on a couch...
Please refer to docs.
@misc{2023xtuner,
title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
author={XTuner Contributors},
howpublished = {\url{https://github.com/InternLM/xtuner}},
year={2023}
}