Image Feature Extraction
Transformers
PyTorch
intern_vit_6b
feature-extraction
custom_code
Edit model card

Model Card for InternViT-6B-224px

Image Description

[InternVL 1.5 Technical Report] [Paper] [GitHub] [Chat Demo] [中文解读]

Model Date Download Note
InternViT-6B-448px-V1.5 2024.04.20 🤗 HF link support dynamic resolution, super strong OCR (🔥new)
InternViT-6B-448px-V1.2 2024.02.11 🤗 HF link 448 resolution
InternViT-6B-448px-V1.0 2024.01.30 🤗 HF link 448 resolution
InternViT-6B-224px 2023.12.22 🤗 HF link vision foundation model
InternVL-14B-224px 2023.12.22 🤗 HF link vision-language foundation model

Model Details

  • Model Type: vision foundation model, feature backbone
  • Model Stats:
    • Params (M): 5903
    • Image size: 224 x 224
  • Pretrain Dataset: LAION-en, LAION-COCO, COYO, CC12M, CC3M, SBU, Wukong, LAION-multi
  • Note: This model has 48 blocks, and we found that using the output after the fourth-to-last block worked best for VLLM. Therefore, when building a VLLM with this model, please use the features from the fourth-to-last layer.

Linear Probing Performance

See this document for more details about the linear probing evaluation.

IN-1K IN-ReaL IN-V2 IN-A IN-R IN-Sketch
88.2 90.4 79.9 77.5 89.8 69.1

Model Usage (Image Embeddings)

import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor

model = AutoModel.from_pretrained(
    'OpenGVLab/InternViT-6B-224px',
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).cuda().eval()

image = Image.open('./examples/image1.jpg').convert('RGB')

image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-224px')

pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()

outputs = model(pixel_values)

Citation

If you find this project useful in your research, please consider citing:

@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}

Acknowledgement

InternVL is built with reference to the code of the following projects: OpenAI CLIP, Open CLIP, CLIP Benchmark, EVA, InternImage, ViT-Adapter, MMSegmentation, Transformers, DINOv2, BLIP-2, Qwen-VL, and LLaVA-1.5. Thanks for their awesome work!

Downloads last month
1,265
Inference API (serverless) does not yet support model repos that contain custom code.

Datasets used to train OpenGVLab/InternViT-6B-224px

Collection including OpenGVLab/InternViT-6B-224px