InternVL
Collection
InternVL Family: A Pioneering Open-Source Alternative to GPT-4V
•
20 items
•
Updated
•
9
[InternVL 1.5 Technical Report] [Paper] [GitHub] [Chat Demo] [ä¸æ–‡è§£è¯»]
Model | Date | Download | Note |
---|---|---|---|
InternViT-6B-448px-V1.5 | 2024.04.20 | 🤗 HF link | support dynamic resolution, super strong OCR (🔥new) |
InternViT-6B-448px-V1.2 | 2024.02.11 | 🤗 HF link | 448 resolution |
InternViT-6B-448px-V1.0 | 2024.01.30 | 🤗 HF link | 448 resolution |
InternViT-6B-224px | 2023.12.22 | 🤗 HF link | vision foundation model |
InternVL-14B-224px | 2023.12.22 | 🤗 HF link | vision-language foundation model |
See this document for more details about the linear probing evaluation.
IN-1K | IN-ReaL | IN-V2 | IN-A | IN-R | IN-Sketch |
---|---|---|---|---|---|
88.2 | 90.4 | 79.9 | 77.5 | 89.8 | 69.1 |
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
model = AutoModel.from_pretrained(
'OpenGVLab/InternViT-6B-224px',
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).cuda().eval()
image = Image.open('./examples/image1.jpg').convert('RGB')
image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-224px')
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
outputs = model(pixel_values)
If you find this project useful in your research, please consider citing:
@article{chen2023internvl,
title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
journal={arXiv preprint arXiv:2312.14238},
year={2023}
}
InternVL is built with reference to the code of the following projects: OpenAI CLIP, Open CLIP, CLIP Benchmark, EVA, InternImage, ViT-Adapter, MMSegmentation, Transformers, DINOv2, BLIP-2, Qwen-VL, and LLaVA-1.5. Thanks for their awesome work!