Edit model card

Model Details

This model is an int4 model with group_size 128 of google/gemma-2b generated by intel/auto-round.

Use the model

INT4 Inference with AutoGPTQ's kernel

Install the latest AutoGPTQ from source first

##pip install auto-gptq[triton] 
##pip install triton==2.2.0
from transformers import AutoModelForCausalLM, AutoTokenizer
quantized_model_dir = "Intel/gemma-2b-int4-inc"
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir)
model = AutoModelForCausalLM.from_pretrained(quantized_model_dir,
                                             device_map="auto",
                                             trust_remote_code=False,
                                             )
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir, use_fast=True)
text = "There is a girl who likes adventure,"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50, do_sample=True)[0]))

Evaluate the model

Install lm-eval-harness from source, and the git id we used is 96d185fa6232a5ab685ba7c43e45d1dbb3bb906d

pip install auto-gptq[triton] pip install triton==2.2.0

Please note that there is a discrepancy between the baseline result and the official data, which is a known issue within the official model card community.

lm_eval --model hf --model_args pretrained="Intel/gemma-2b-int4-inc",autogptq=True,gptq_use_triton=True --device cuda:0 --tasks lambada_openai,hellaswag,piqa,winogrande,truthfulqa_mc1,openbookqa,boolq,rte,arc_easy,arc_challenge,mmlu --batch_size 16
Metric FP16 int4
Avg. 0.5383 0.5338
mmlu 0.3337 0.3276
lambada_openai 0.6398 0.6319
hellaswag 0.5271 0.5161
winogrande 0.6472 0.6472
piqa 0.7699 0.7622
truthfulqa_mc1 0.2203 0.2191
openbookqa 0.3020 0.2980
boolq 0.6939 0.6939
rte 0.6426 0.6498
arc_easy 0.7424 0.7348
arc_challenge 0.4019 0.3908

Reproduce the model

Here is the sample command to reproduce the model

git clone https://github.com/intel/auto-round
cd auto-round/examples/language-modeling
pip install -r requirements.txt
python3 main.py \
--model_name  google/gemma-2b \
--device 0 \
--group_size 128 \
--bits 4 \
--iters 400 \
--deployment_device 'gpu' \
--output_dir "./tmp_autoround" 

Ethical Considerations and Limitations

The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.

Therefore, before deploying any applications of the model, developers should perform safety testing.

Caveats and Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

Here are a couple of useful links to learn more about Intel's AI software:

  • Intel Neural Compressor link
  • Intel Extension for Transformers link

Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.

Cite

@article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }

arxiv github

Downloads last month
14
Safetensors
Model size
1.32B params
Tensor type
I32
·
BF16
·
FP16
·

Dataset used to train Intel/gemma-2b-int4-inc