Edit model card

font-identifier

This model is a fine-tuned version of microsoft/resnet-18 on the imagefolder dataset. Result: Loss: 0.1172; Accuracy: 0.9633

Try with any screenshot of a font, or any of the examples in the 'samples' subfolder of this repo.

Model description

Identify the font used in an image. Visual classifier based on ResNet18.

I built this project in 1 day, with a minute-by-minute journal on Twitter/X, on Pebble.social, and on Threads.net.

The code used to build this model is in this github rep

Intended uses & limitations

Identify any of 48 standard fonts from the training data.

Training and evaluation data

Trained and eval'd on the gaborcselle/font-examples dataset (80/20 split).

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.0243 0.98 30 3.9884 0.0204
0.8309 10.99 338 0.5536 0.8551
0.3917 20.0 615 0.2353 0.9388
0.2298 30.99 953 0.1326 0.9633
0.1804 40.0 1230 0.1421 0.9571
0.1987 46.99 1445 0.1250 0.9673
0.1728 48.0 1476 0.1293 0.9633
0.1337 48.78 1500 0.1172 0.9633

Confusion Matrix

Confusion matrix on test data.

image

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.0.0
  • Datasets 2.12.0
  • Tokenizers 0.14.1
Downloads last month
194
Safetensors
Model size
11.2M params
Tensor type
F32
·

Finetuned from

Dataset used to train gaborcselle/font-identifier

Space using gaborcselle/font-identifier 1

Evaluation results