Use custom models
By default, Transformers.js uses hosted pretrained models and precompiled WASM binaries, which should work out-of-the-box. You can customize this as follows:
Settings
import { env } from '@xenova/transformers';
// Specify a custom location for models (defaults to '/models/').
env.localModelPath = '/path/to/models/';
// Disable the loading of remote models from the Hugging Face Hub:
env.allowRemoteModels = false;
// Set location of .wasm files. Defaults to use a CDN.
env.backends.onnx.wasm.wasmPaths = '/path/to/files/';
For a full list of available settings, check out the API Reference.
Convert your models to ONNX
We recommend using our conversion script to convert your PyTorch, TensorFlow, or JAX models to ONNX in a single command. Behind the scenes, it uses π€ Optimum to perform conversion and quantization of your model.
python -m scripts.convert --quantize --model_id <model_name_or_path>
For example, convert and quantize bert-base-uncased using:
python -m scripts.convert --quantize --model_id bert-base-uncased
This will save the following files to ./models/
:
bert-base-uncased/
βββ config.json
βββ tokenizer.json
βββ tokenizer_config.json
βββ onnx/
βββ model.onnx
βββ model_quantized.onnx
For the full list of supported architectures, see the Optimum documentation.
< > Update on GitHub