Edit model card

camembert-ner: model fine-tuned from camemBERT for NER task.

Introduction

[camembert-ner] is a NER model that was fine-tuned from camemBERT on wikiner-fr dataset. Model was trained on wikiner-fr dataset (~170 634 sentences). Model was validated on emails/chat data and overperformed other models on this type of data specifically. In particular the model seems to work better on entity that don't start with an upper case.

Training data

Training data was classified as follow:

Abbreviation Description
O Outside of a named entity
MISC Miscellaneous entity
PER Person’s name
ORG Organization
LOC Location

How to use camembert-ner with HuggingFace

Load camembert-ner and its sub-word tokenizer :
from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/camembert-ner")
model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/camembert-ner")


##### Process text sample (from wikipedia)

from transformers import pipeline

nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
nlp("Apple est créée le 1er avril 1976 dans le garage de la maison d'enfance de Steve Jobs à Los Altos en Californie par Steve Jobs, Steve Wozniak et Ronald Wayne14, puis constituée sous forme de société le 3 janvier 1977 à l'origine sous le nom d'Apple Computer, mais pour ses 30 ans et pour refléter la diversification de ses produits, le mot « computer » est retiré le 9 janvier 2015.")


[{'entity_group': 'ORG',
  'score': 0.9472818374633789,
  'word': 'Apple',
  'start': 0,
  'end': 5},
 {'entity_group': 'PER',
  'score': 0.9838564991950989,
  'word': 'Steve Jobs',
  'start': 74,
  'end': 85},
 {'entity_group': 'LOC',
  'score': 0.9831605950991312,
  'word': 'Los Altos',
  'start': 87,
  'end': 97},
 {'entity_group': 'LOC',
  'score': 0.9834540486335754,
  'word': 'Californie',
  'start': 100,
  'end': 111},
 {'entity_group': 'PER',
  'score': 0.9841555754343668,
  'word': 'Steve Jobs',
  'start': 115,
  'end': 126},
 {'entity_group': 'PER',
  'score': 0.9843501806259155,
  'word': 'Steve Wozniak',
  'start': 127,
  'end': 141},
 {'entity_group': 'PER',
  'score': 0.9841533899307251,
  'word': 'Ronald Wayne',
  'start': 144,
  'end': 157},
 {'entity_group': 'ORG',
  'score': 0.9468960364659628,
  'word': 'Apple Computer',
  'start': 243,
  'end': 257}]

Model performances (metric: seqeval)

Overall

precision recall f1
0.8859 0.8971 0.8914

By entity

entity precision recall f1
PER 0.9372 0.9598 0.9483
ORG 0.8099 0.8265 0.8181
LOC 0.8905 0.9005 0.8955
MISC 0.8175 0.8117 0.8146

For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails: https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa

Downloads last month
1,856,548
Safetensors
Model size
110M params
Tensor type
F32
·
I64
·

Dataset used to train Jean-Baptiste/camembert-ner

Spaces using Jean-Baptiste/camembert-ner 67